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The aim of the present work is to investigate experimentally the heat
transfer performance of gravity assisted heat pipes having wicks filled
with porous medium, using fluorocarbon R-11 refrigerant as the
working fluid. The particles of the porous media used in the
experiments were made of nickel, mild steel, granite, marble,
ceramic, glass, and gravel covering a wide range of solid thermal
conductivities and particle diameters. The effects of the evaporator
heat flux, and evaporating vapor pressure on both the evaporator heat
transfer coefficient, h, and the overall thermal conductance, C, of the
heat pipe (tested heat transfer parameters) were also studied. The
present results for smooth heat pipe (without porous medium) show
good agreement with the available previous published results. For
porous wicked heat pipe, it was found that the tested heat transfer
parameters were strongly improved with increasing particle to fluid
thermal conductivity ratios (for same packing material diameter), and
with decreasing particle to heat pipe diameter ratios (for same
material). Moreover, it was concluded that, for porous wicked heat
pipe using nickel packing material, the average maximum value of
(h/hgm) is about 2.40, and of (C/Cgpy) is about 2.10. These values are
obtained for smaller particle to heat pipe diameter ratio
(d/D = 0.0912). Finally, correlations for the heat transfer parameters
of the heat pipe (h & C) as functions of the different tested parameters
were deduced.
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1. INTRODUCTION

The heat pipe is an efficient heat conductor
which is used to transfer heat from one location
to another with small temperature gradient. It is
divided into three sections, evaporator,
adiabatic, and condenser. Heat is added through
the evaporator section, where the working fluid
is vaporized. The vapor then passes through the
adiabatic section. The vapor releases its latent
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heat and gets liquefied in the condenser. The
circulation is completed by the return condensed
liquid to the evaporator through the wick or
packed bed under the driving action of capillary
forces.

Due to their high efficiency and reliability, heat
pipes have been used in different applications
including energy conversion systems, cooling of
nuclear reactors, cooling of electronic
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equipment and high performance space
applications [1&2]. Over the past 40 years,
extensive studies have been conducted in order
to provide a deep understanding of the heat pipe
operation and hence to improve its performance.
Faghri et al. [3] investigated experimentally and
theoretically the condensate heat transfer
coefficient and the flooding limit of
conventional and annular two-phase closed
thermosyphon using R-113 and acetone as
working fluids. It was found that, a significant
increase in the heat transfer coefficient was
obtained for annular thermosyphons than
conventional ones. Faghri and Thomas [4]
studied experimentally and theoretically the
capillary limit of the concentric annular heat
pipe (two concentric pipes of unequal
diameters). The capillary wicks can be placed
on both the inside of the outer pipe and the
outside of the inner pipe. The results show a
significant increase in the heat capacity per unit
length compared to conventional heat pipe with
the same outer diameter. Sakr and
Abd El-Aziz [5] , and Abd EI-Aziz et al. [6] and
carried out an experimental investigation to
study the heat transfer performance for gravity
assisted heat pipes with different working fluids.
They found that, the heat pipe performance is
affected by the working fluids and is improved
with increasing the operating pressure. Abo El-
Nasr and El-Haggar [7] performed an
experimental investigation to study the effect of
the wick structures on the heat transfer
characteristics of the heat pipes. They found
that, increasing the number of screen wick
layers (up to 16 layers) enhance the ability of
the heat pipe to transfer heat. Zuo and Faghri [8]
presented a thermodynamic analysis of the heat
pipe. It was concluded that, in order to transport
heat through a longer distance, a working fluid
with a larger latent heat of vaporization, a
smaller vapor viscosity and a larger vapor
density is preferred. Taher et al. [9] carried out
an experimental investigation to study the heat
transfer parameters (h & C) of gravity assisted
heat pipes with inserted concentric finned tubes.
It was found that, the tested heat transfer
parameters of a smooth heat pipe were
significantly improved by inserting a concentric
finned tube. Osman [10] conducted
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experimentally the effect of inserting screen
layers from brass material, on the heat transfer
performance of gravity assisted heat pipe, using
R-11 as the working fluid. The results indicated
that, the heat transfer parameters of the heat
pipe were improved by increasing the wire mesh
number and the number of mesh layers.
Berbish [11] studied experimentally the effect
of surface roughness on the heat transfer
performance of gravity assisted heat pipes with
wire mesh screen wicks, using R-12 as the
working fluid. It was concluded that, the tested
heat transfer parameters of the heat pipe were
increased with the increase of the surface
roughness, screen thermal conductivity, and
screen wick layers number. El-Kady et al. [12]
carried out an experimental investigation to
study the performance of three geometries of
heat pipe, using pure water as the working fluid.
The effects of applied heat flux and the
geometry of the outer surface of the condenser
section was examined. The results show that the
overall heat transfer coefficient, and boiling and
condensation heat transfer coefficients have
higher values for knurled sample and
longitudinal grooved sample compared with
smooth sample. Heat and mass transfers in
porous media are of growing interest in a wide
range of engineering domains. A wide variety of
applications involving convective transport in
porous media include utilization of geothermal
energy, and design of packed bed reactors.
Udell [13] conducted a one-dimensional, steady
state analysis of the heat and mass transfer in
porous media saturated with the liquid and
vapor phases of a single component fluid. The
effects of capillarity, gravity forces, and phase
change were included. It was found that the heat
transfer was increased several orders of
magnitude beyond pure conduction due to an
evaporation, convection and condensation
phenomenon similar to conventional heat pipe
operation. De Vries [14] established a
phenomenological theory of combined heat and
moisture transfer in porous media. The study
revealed that, water movement through porous
media is often caused by a temperature gradient.
Water evaporates from hot regions and moves
across the gas-filled pores by diffusion and
condenses on the cold region thus releasing its
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latent heat of vaporization. Crowe et al. [15]
performed an experimental and theoretical
investigation to study the performance limits of
a copper heat pipe with copper porous wick
using water and R-11 as working fluids. The
results showed that, shorter adiabatic section
length gives better performance. It was also
found that, the maximum heat flow rate was
obtained for heat pipes having low porosity
wick. Bouddour et al. [16] developed a
theoretical model to study the heat and mass
transfer in wet-porous wick in presence of
evaporation-condensation. It was found that the
heat transfer occurs by conduction and
convection in presence of phase change by
evaporation-condensation. From the previous
survey, the heat transfer performance of heat
pipes having wicks filled with porous medium
has not been studied extensively. Accordingly,
the purpose of the present work is to explore
some aspects of the heat transfer characteristics
for heat pipe with wicks filled with porous
medium. The effects of the particle diameter and
the porous medium thermal conductivity on the
heat pipe performance are examined
experimentally.

2. EXPERIMENTAL APPARATUS

The experimental apparatus which is used to
investigate the heat transfer characteristics of
gravity assisted heat pipe with wick filled with
porous medium is shown schematically in
Fig. (1). It consists mainly of the vertical heat
pipe, insulation layers, the heating wire, the
cooling water circuit and different measuring
instruments. A heat source is applied to the
lower section of the heat pipe (evaporator
section) to evaporate the liquid. The vapor flows
upward to the upper section of the pipe
(condenser section) where the latent heat of
condensation is removed by circulating cooling
water. The condensed liquid returns back to the
evaporator by gravity. A mild-steel wire screen
mesh of thickness 0.8 mm is fixed rigidly and
concentrically inside the heat pipe in a hollow
cylindrical form of about 8.0 mm outer
diameter. The heat pipe wick (space between the
screen outer diameter and the heat pipe inner
diameter) is filled with porous medium, as
shown in Fig.(2). The tested heat pipe is made
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of hard copper material, of 28.5 mm inside
diameter, 1.5 mm thickness, and a total length
of 400 mm. The length of the evaporator section
is 140 mm, adiabatic section is 120 mm, and
condenser section is 140 mm. The cooling water
flow rate is measured using a calibrated orifice-
meter. A manual ball valve is installed before
the orifice-meter to control the water flow rate.
The electrical heater is covered with an electric
insulation. A cylindrical rock wool insulation of
thickness of 25.4 mm sheltered with aluminum
foil is used for covering the whole heat pipe to
minimize the heat loss. The outer and inner
insulation surface temperatures are measured at
different axial positions along the pipe to
calculate the radial heat loss. Heat input is
determined from the measured electrical power
input as corrected for heat loss through outer
wall, based on the average inner and outer
insulation temperatures. The heat loss is found
to be less than 2 %. Figure (2) show the details
of cross-sectional view in the evaporator zone of
the heat pipe. Surface temperatures are
measured at eleven axial stations along the heat
pipe as shown in Fig. (3). Calibrated
thermocouples are fixed at each test position
with the hot junction of each embedded in 0.5
mm deep drilled holes to be in good contact
with the pipe surface. The calibrated
thermocouples are made from copper-
constantan wires of 0.25 mm diameter with
+0.1 °C accuracy. The fluid temperatures are
measured using six thermocouples inserted
inside the heat pipe, where two thermocouples
are press fitted into the evaporator, adiabatic,
and condenser sections as shown in Fig. (3).
The fluid temperature in the adiabatic section is
used to measure the average saturation
temperature corresponding to the operating
pressure. This location is selected to avoid the
temperature of the superheated boiling liquid in
the evaporator or the sub-cooled condensate in
the condenser [3&4]. The heat pipe is designed
to have the facility of changing the porous
medium with different particles diameters and
materials. At first the heat pipe without packing
material (smooth) is used for calibrating the
experimental apparatus and also for comparison
with cases using packing material. The tested
parameters are shown in Table (1).
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Table (1): The tested parameters

Operating pressure, (bar)

2.0, 2.85,3.95and 5.10

pipe diameter ratios, (d/D)

Porous medium particles diameters to inner heat

0.1684, 0.1404, 0.1123 and 0.0912

Porous medium particles material

Gravel, glass, ceramic, marble, granite,
mild-steel, and nickel

mild-steel and nickel respectively.

ki/ks for gravel, glass, ceramic, marble, granite,

5.2, 12,5, 149, 32.3, 36.1, 533.6 and
1156.7

Seven different packing materials are tested.
The ratios of packing materials conductivity to
liquid refrigerant R-11 conductivity at pressure
equals to 2.0 bar (ks/ks) are given in Table (1).

3. TEST PROCEDURE AND METHOD OF
CALCULATION

The power is supplied via a variac transformer
to adjust the heat flux. At each power setting,
after reaching the steady state condition, data
are recorded concerning the water flow rate,
inlet and outlet water temperatures, current,
voltage, heat pipe wall temperatures, the outer
wall insulation temperatures, and the working
pressure.

The main heat transfer parameters for the tested
heat pipe are the evaporator heat transfer
coefficient and the overall thermal conductance.

The evaporator heat transfer coefficient, h, is
calculated as:

h =q/(Te—Ta) 1)

where: q : the heat rate flux based on the
evaporator outer surface area, (W/m?).

Te average surface
evaporator section, (K).

temperature  along

T, : fluid saturation temperature (along adiabatic
section), (K).

The overall thermal conductance of the heat
pipe is calculated as:
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C=Q/(Te- Te) 2
where: Q : electric heat rate input, (W).

T. average surface temperature along
condenser section, (K)].

4. RESULTS and DISCUSSION

The tested heat transfer parameters of
a gravity-assisted smooth heat pipe and heat
pipe having a wick filled with porous medium at
different tested parameters are presented.

4.1. Results of Smooth Heat Pipe

Figures (4) and (5) show the variations of the
evaporator heat transfer coefficient, hgy,, and the
overall thermal conductance, Cgy, (tested heat
transfer parameters) for a smooth heat pipe
without porous medium wick, against the heat
flux at different operating  pressures,
respectively. It is found that the increase in both
heat flux and operating pressure enhance
significantly the tested heat transfer parameters.
For a constant operating pressure, increasing the
heat flux, the liquid in contact with the pipe
surface will become progressively heated and
bubbles will form nucleation sites. These
bubbles will transport some energy to the heat
pipe surface by latent heat of vaporization and
will also increase the heat transfer parameters
[6&17]. At constant heat flux, an increase in
heat transfer parameters is found with the
increase of working pressure according to the
dependence of the temperature drop of the
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working fluid on the pressure drop along the
heat pipe. Consequently the pressure drop and
the temperature drop along the heat pipe
decrease by increasing the working pressure as a
result of decrease in vapor specific volume for a
constant vapor mass flow rate by transferring a
given heat input [5, 6&10].

To check the validity of the present apparatus,
comparisons are made between the present
results of the tested heat transfer parameters and
the existing previous published data (Sakr and
Abd El-Aziz [5], and Osman [10]). The
comparisons are indicated in Figs (6) and (7),
and good agreement is obtained.

The evaporator heat transfer coefficient, hgn,
and the overall thermal conductance, Csny, are
correlated as functions of operating pressure and
heat flux using the measured data plotted in
Figs. (4) and (5) for smooth heat pipe, as:

sm —

0.43 p018 g3 (3)

and

Csm = 0.014 PO %! (4)

The present correlations for the evaporator heat
transfer coefficient, Eq.(3), and the over all
thermal conductance, Eq. (4) are valid with the
present experimental results within +5.8% and
+6.7 % deviations, as shown in Figs. (8) and (9),
respectively for all tested parameters ranges.
Correlation (3) agrees with the previous
published correlations achieved by
Casarosa [18] and Abd El-Aziz et al [6], and
Taher et al. [9], as hsy IS proportional to the
product (P®® ¢?®) and the constant of
propotionality depends on the thermophysical
properties of the working fluid, and the heat
pipe dimensions and materials.

4.2. Results of Porous Wicked Heat Pipe

The particles of the porous media used in the
experiments were made of gravel, glass,
ceramic, marble, granite, mild steel and nickel
covering a wide range of solid thermal
conductivities and particle diameters.
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4.2.1. Effect of porous medium thermal
conductivity

For heat pipes having wicks filled with solid
particles, of special interest for studies of heat
transfer augmentation is the question of how
much the heat transfer parameters are improved
relative to an equivalent smooth pipe (without
porous medium) at similar conditions. The
variations of the evaporator heat transfer
coefficient and the overall thermal conductance
(tested heat transfer parameters) versus the heat
flux for different packing material thermal
conductivities at constant particle to the heat
pipe diameter ratio of about d/D=0.1684, are
shown in Figs. (10) and (11), respectively. The
results show that the use of porous wick inside
heat pipe increases considerably both the
evaporator heat transfer coefficient and the
overall thermal conductance. The porous media
solid particles serve as effective enhancers for
heat pipes. The heat transfer augmentation
produced by the porous matrix is attributed to
a combination effects, including thinning the
thermal boundary layer of the pipe, and direct
conduction  through the porous matrix.
Moreover, it is found that the tested heat
transfer parameters increase with the increase in
particle thermal conductivity and the highest
values are associated with the use of nickel
packing material. This result is due to the high
conduction to nickel solid particles (higher
conductivity)  touching the heat pipe
surface [19, 20& 21].

For the investigated packing bed materials, the
enhancement ratios of both the evaporator heat
transfer coefficient (h/hsn) and the overall
thermal conductance (C/Cyn) are indicated in
Figs. (12) and (13), respectively. It is seen that
the enhancement ratios are independent of the
heat flux and the maximum values of both
(h/hgm) and (C/Csm) are averaged at nearly about
1.90 and 1.70 for nickel packing material
at d/D =0.1684.

4.2.2. Effect of porous medium particle
diameter

The variations of the tested heat transfer
parameters with the heat flux for different
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particle to heat pipe inner diameter ratios (d/D)
are illustrated in Figures (14) and (15). The
particles of the porous medium were made of
nickel material with 0.0912<d/D<0.1684. For
the same packing material, it is observed that
the tested heat transfer parameters are increased
with the decrease of the particle to the heat pipe
diameter ratio. This may be attributed to
increase the contact conduction area of solid
particles touching the heat pipe surface with the
smaller particle diameter [19&22].

Figures (16) and (17) indicate the enhancement
ratios of the evaporator heat transfer coefficient,
h/hg,, and the overall thermal conductance,
C/Csm, for porous wicked heat pipe using nickel
packing material, respectively. It is found that,
the average maximum value of (h/hgy) is about
2.40, and of (C/Cyp) is about 2.10. These values
are obtained for smaller particle to heat pipe
diameter ratio (d/D = 0.0912). Also, for the
same operating pressure, it is observed from
these figures that the enhancement ratios (h/hgny)
and (C/Cyn) are nearly constant over the present
heat flux range.

Finally, correlations for the enhancement ratios
of both the evaporator heat transfer coefficient
(h/hgy) and the overall thermal conductance
(C/Cqm) are obtained as functions of the particle
to heat pipe diameter ratio, (d/D) and the
particle to liquid thermal conductivity ratio,
(ks/k) using the present experimental data, as:

h/hgn = [0.644 + 0.048 (D/d)] (ks/ks)* %2 (5)
and
C/Csm = [0.768 + 0.017 (D/d)"*](ks/kr)***  (6)

These correlations, Egs. (5) and (6), for both
(h/hgm) & (CI/Cqy) are in good agreement with
the present experimental data within £9.1% &
+9.5% maximum deviations as shown in
Figs. (18) and (19), respectively within the
tested ranges of (d/D) and (Ks/ks).

5. CONCLUSIONS
In the present study, an experimental
investigation is conducted to study the tested

heat transfer parameters of gravity assisted heat
pipes having wicks filled with porous medium.
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From the previous results and discussion, the
following conclusions can be obtained:

1. The evaporator heat transfer coefficient and
the overall thermal conductance (tested heat
transfer parameters) of the heat pipe increase
with increasing both the operating pressure,
and the heat flux.

2. The tested heat transfer parameters for
smooth heat pipe are correlated as a function
of the heat flux, g, and the operating
pressure, P, as:

hey = 0.43 018 q2/3
and
Com = 0.014 P02 g%

The obtained correlations for hgy & Cgn, fit
the present experimental data within + 5.8%
and £6.7%  maximum  deviations,
respectively.

3. The tested heat transfer parameters for
porous wicked heat pipe increase
significantly with the increase in the packing
material conductivity, and with the decrease
in the particle to the heat pipe diameter ratio.

4. For porous wicked heat pipe using nickel
packing material, it is found that the average
maximum value of (h/hgy) is about 2.40, and
of (C/Csm) is about 2.10. These values are
obtained for smaller particle to heat pipe
diameter ratio (d/D= 0.0912).

5. Correlations for the augmentation of the
tested heat transfer parameters are obtained
as functions of the particle to heat pipe
diameter ratio, (d/D) and the particle to
liquid thermal conductivity ratio, (ks/ks), as:

h/hgn=[0.644+0.048(D/d)](k/ks)°1%
and
C/Com=[0.768+0.017(D/d)"**] (ks/ks)***

These correlations for (h/hgy), and (C/Cgn) are
in good agreement with the present measured
data within +9.1% and 9.5 % maximum
deviations, respectively.
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NOMENCLATURE

Overall thermal conductance of the heat
pipe, W/K.

D Inner heat pipe diameter, m.

d Solid particle diameter of the porous
medium, m.

h  Evaporator heat transfer coefficient, W/m?
K.

k  Coefficient of thermal conductivity, W/m
K.

P Operating pressure, bar.

Q Rate of heat flow (input power), W.

g Rate of heat flux, W/m?

T Temperature, K.

Subscripts

¢ Condenser.

e Evaporator.

f Liquid.

s Solid.

sm Smooth heat pipe.
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Fig. (1) Experimental test rig layout
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Fig. (2) Cross sectional view in the evaporator
zone of the heat pipe
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Fig. (3) Details of the thermocouples locations
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Fig. (4) Variation of the evaporator heat transfer coefficient,
hsm, With heat flux, g, for smooth heat pipe
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Fig. (5) Variation of the overall thermal conductance, Cqp,
with heat flux, g, for smooth heat pipe
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Fig. (6) Comparison of measured evaporator heat transfer
coefficient with other published results for smooth heat pipe
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Fig. (7) Comparison of measured overall thermal conductance
with other published results for smooth heat pipe
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Fig. (8) Comparison of measured evaporator heat transfer
coefficient of smooth heat pipe with those obtained from
present correlation, Eq. (3)

5
Smooth heat pipe
4 R-11 2] +67%
P (har) L L
= 200 Lo A
3 ° 285 gy
’ ¢ '.‘
x 3.95 s A
l‘ —-
5.10
2 ‘4 >
1 ol
0
0 1 2 3 4 5

Csm, measured (W/ K)

Fig. (9) Comparison of measured overall thermal
conductance of smooth heat pipe with those obtained
from present correlation, Eq. (4)
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Fig. (10) Variation of the evaporator heat transfer coefficient,
h, with heat flux, g, for porous wicked heat pipe at different
packing materials and d/D=0.1684
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Fig. (11) Variation of the overall thermal conductance, C,
with heat flux, q, for porous wicked heat pipe at different
packing materials and d/D=0.1684
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Fig. (12) Enhancement ratio of the evaporator heat transfer
coefficient, h/hg,, with heat flux, g, for porous wicked heat
pipe at different packing materials and d/D=0.1684
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Fig. (13) Enhancement ratio of the overall thermal conductance,

C/Csn, with heat flux, g, for porous wicked heat pipe at
different packing materials and d/D=0.1684
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Fig. (14) Variation of the evaporator heat transfer coefficient,
h, with heat flux, g, for porous wicked heat pipe at different
nickel particle to heat pipe diameter ratios
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Fig. (15) Variation of the overall thermal conductance, C,
with heat flux, q, for porous wicked heat pipe at different
nickel particle to heat pipe diameter ratios
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Fig. (16) Enhancement ratio of the evaporator heat transfer
coefficient, h/hgy,, with heat flux, q, for porous wicked heat
pipe at different nickel particle to heat pipe diameter ratios
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Fig. (17) Enhancement ratio of the overall thermal conductance,
C/Cgm, with heat flux, g, for porouswicked heat pipe at
different nickel particle to heat pipe diameter ratios
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Fig. (18) Comparison of measured evaporator heat transfer
coefficient of porous wicked heat pipe with those obtained
from present correlation, Eq. (5)
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Fig. (19) Comparison of measured overall thermal
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obtained from present correlation, Eq. (6)
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